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Abstract 

The central question studied in this thesis is how to design high-level reusable components 
for developing synchronous groupware applications. A modern user interface requires the 
separation of applications into two components, namely application and graphical user 
interface. An effective architecture for synchronous, multiple-user groupware applications 
requires a separation of one more component from the application: the management of the 
session and shared data. This component provides a framework that manages the 
collaborative user session, shared data in an abstraction form, and floor control. This thesis 
calls this separation "coordination independence." This thesis demonstrates the feasibility 
of the architecture by describing an experimental system, called TALISMAN, using 
Garnet. TALISMAN is implemented as a single-process, centralized system with multiple 
remote graphical displays. The system which features this separation relies upon object 
inheritance and the consttaint satisfaction mechanism in the underlying object system. The 
architecture also makes the conversion of a single-user application into a multiple-user 
application relatively easy. 

This research was sponsored by NCCOSC under Contract No. N66001-94-C-6037, 
ARPA Order No. B326. The views and conclusions contained in this document are those 
of the authors and should not be interpreted as representing the official policies, either 
expressed or implied, of NCCOSC, ARPA, or the U.S. Government. 
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CHAPTER    1. 

INTRODUCTION    AND     MOTIVATIONS 

Recent advancements in information networking technologies have enabled people at a 
large distance to communicate more rapidly and efficiently than ever. Vast opportunities 
exist for people to collaborate by using groupware. Communication among people over 
computer networks includes both asynchronous and synchronous interactions. Most 
commercial applications, including electronic mail and workflow management systems, are 
message-based asynchronous groupware because people collaborate at different times. A 
communication delay is permissible in such asynchronous groupware. Various applications 
as well as their development kits have been commercially introduced to help users 
customize asynchronous groupware systems. 

Synchronized interactions, on the other hand, require a real-time exchange of information 
among session participants with some form of floor control. Examples of floor control 
policies include people "taking turns" by alternating input, and simultaneous editing where 
everyone can edit at the same time. Possible application domains include window sharing, 
text-based real-time conferencing, telephony, and multiple-player games. Currently, 
however, applications for synchronized communications are often primitive and low-level 
from the perspectives of software extendibility and reusability. Although there have been 
various papers addressing low-level issues of toolkit and language implementations, a 
software architecture that features a high-level, reusable framework is still under research. 
It is often the case that synchronous groupware is tailor-made for one particular program. 
Extending such groupware applications is very difficult because the typical system 
architecture is not designed for different applications. The availability of reusable system 
components would help improve the efficiency of software development. 

An effective architecture with reusable components for synchronous groupware 
applications requires a separation of one more component from the application: the 
management of the session and shared data. This component provides a framework that 
manages the collaborative user session, shared data in an abstraction form, and floor 
control. This thesis calls this separation "coordination independence." 

TALISMAN is a prototype system that provides reusable components based on the 
centralized data management configuration. Through TALISMAN, this thesis attempts to 
demonstrate that coordination independence, in addition to dialogue independence, is a 
useful concept to help develop synchronous groupware applications. TALISMAN is 
written in LISP using the Garnet [13] user interface development environment. 



CHAPTER 2. 

A BRIEF SURVEY OF APPROACHES TO THE PROBLEM 

2.1. Screen   Sharing 

As Kohlert, et. al. state [10], there have been numerous attempts to design and implement 
"multi-user interface toolkits" for synchronous groupware applications. There are several 
different approaches to design these toolkits. One of the approaches is to share contents of 
the entire screen display among people. While the shared screen may contain more than 
one window, there is usually no floor control or conference management features. 
Examples of such an approach include NLS and MB Link systems[10]. The screen sharing 
is accomplished by implementing special mechanisms to capture and distributed screen 
images at a low level in the system. 

This approach does not require application programs to be aware of the screen being shared 
by multiple users. The system can replicate screen images without making any changes to 
die application code. 

2.2. Window   Sharing 

Another approach is to share windows among users without modifying original 
applications. The window sharing approach is characterized by using special mechanisms 
within the multiple-window system to handle drawing objects in replicated windows as 
well as to propagate input events across replicated windows. Shared X from HP[3] is an 
example of this approach. Shared X not only allows displaying replicated windows across 
network, but also accepts user inputs from multiple hosts to the window. The window 
sharing approach has been the most popular among commercial applications because users 
can share windows from any applications. On the other hand, the systems based on this 
approach cannot provide the fine floor control based on application-specific rules because 
the input control mechanism is embedded within a low layer of the window system. 

2.3. Collaboration-aware    Window    Sharing 

A window sharing system such as Art Windows [10] features specialized window 
management and input event propagation policies to share windows, while the application 
is also aware of the window sharing feature of the underlying window system. The 
Groupkit system demonstrates a centralized user registration mechanism under a distributed 
processing environment [5, 6, 16]. After registering a user in the central registrar, the 
system maintains the system state consistency by peer-to-peer application process 
communication with application-dependent communication protocols. The Groupkit 
system also uses specialized low-level mechanisms, such as an overlay of windows, to 
provide a collaborative environment for multiple users. 

2.4. Data   Sharing   Through   Dialogue   Independence 

An approach which seems promising attempts to separate application-specific components 
from user-interface components at the system architecture-level [10]. The key concept 
behind this approach is data sharing based on dialogue independence, where the user- 
dialogue component is separate from the application-specific, computational component 



[1] Systems such as Rendezvous [8, 9, 15] and LIZA [2] are examples of this approach. 
The LIZA toolkit uses a server-client structure, where a single server maintains the global 
state information and multiple clients are responsible for the user interface [3]. LIZA 
extends the Suite toolkit to modify a single-user application to a simultaneous multi-session 
application. 

The Rendezvous system architecture is based on an object-oriented model. The system 
uses an "Abstraction-Link-View (ALV)" model [9] to relate abstract information with 
multiple views for individual users. According to the model, an application designer must 
classify all the information as either abstract data or view data. The abstract data is shared 
among multiple users. The designer also must declare how abstract data and view data are 
converted to each other. A link is an entity that connects two graphical objects by 
determining one's characteristics in terms of another's. The system also supports a special 
type of link called the "Tree Maintenance Link" to define a relationship between an 
abstraction object and a view object. 

While this dialogue-independent architecture is very effective for multi-user applications, 
we believe that the two-component architecture is not sufficient to provide highly reusable 
components for synchronous groupware applications. The problem with the two- 
component architecture for groupware systems is it does not separate the multiple-user 
coordination management from the application. The coordination management component 
provides services for floor control, telepointing, and also controls how and when to update 
abstract data and views. Systems based on the two-component architecture may suffer in 
changing the session and shared data management functions because the shared abstract 
data component is embedded in the application-dependent code. 

To provide a high-level architecture with reusable components, we need to enable software 
developers to reuse not only the graphics dialogue components but also the user 
coordination aspects such as floor control, telepointing, and updating the abstraction and 
views. We term this separation mechanism "coordination independence." An effective 
high-level architecture for synchronous groupware requires both dialogue independence 
and coordination independence. 

2.5.  Appropriate   Interface   Levels  for  Network  Communications 

In order to facilitate collaborative work among multiple users, the synchronous groupware 
system must provide data communication services across the network. Different design 
approaches have resulted in different layers as the entry point for network communications. 
There are two major approaches to provide networking services. First, the groupware 
toolkit itself provides network communications. For example, Groupkit [16] features peer- 
to-peer inter-process communications across the network to pass all of the groupwork- 
related information, including the user registrations and application-specific messages. The 
other method is to use the server-client networking services of the underlying window 
system For example, Rendezvous uses die X Window System [9], and the data sent 
across the network are the X protocol messages between the X server in the user terminals 
and the host on which the groupware application and toolkit reside. 

The pros and cons of the two approaches depend on how the system attempts to strike the 
balance between the system performance and the support for heterogeneous system 
platforms. The former approach can be advantageous in terms of the system performance, 
because the communication data format of the groupware application can be optimized at 
the groupware toolkit level to assure high efficiency. Systems with the former approach 
can achieve a better communication-overhead than those with the latter approach because 
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the information sent across network is likely to be shorter, more abstract than the 
information sent across network by the window systems. Moreover, systems with the 
former approach can reduce the number of messages by using broadcast messages. 

On the other hand, the latter approach can be more reasonable if the groupware emphasizes 
the heterogeneous platform use without facing the burden of maintaining software for 
different platforms. For example, one of the unique strength of the X Window System is 
that the X Protocol is machine-independent. There are many X servers available across 
various system platforms, encompassing both workstations and personal computers. By 
using the latter approach, the groupware system can appreciate the strength of the X 
Window System. The groupware toolkit can be implemented on only one platform, and 
still support collaborative sessions across different machines. A simpler system 
maintenance is another benefit of this approach because the groupware toolkit needs to be 
maintained only on one platform. 

A serious drawback of the latter approach is a possible high communication overhead 
caused by the X Protocol messages transmissions. The problem becomes significant 
especially if the groupware application is graphics-intensive. For example, a 
communication overhead problem may arise when a groupware application displays 
movements of mouse cursors of other users on one user's window. To notify movements 
of the mouse cursors, at least one X protocol message that contains mouse cursor 
coordinates must travel through the network whenever a user moves a mouse at a remote 
location. Moreover, if the remote mouse cursor is displayed at multiple locations, separate 
X protocol messages must travel through the network because the X protocol does not have 
any message broadcasting capability. 

The present implementation of TALISMAN is based on the latter approach. All the 
communications between hosts are done at the X protocol level. All the data copying 
among groupware toolkit components occurs within the object system supported by Garnet 
in a single host. 
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CHAPTER   3. 

FUNCTION     REQUIREMENTS    AND    ASSUMPTIONS 

3.1.    Requirements 

Previous studies have listed some functional requirements for synchronous groupware. 
Roseman et. al.[16] summarized technical requirements for a groupware toolkits into the 
following two sets with three specific aspects in each set. These requirements, which were 
derived empirically, assume the groupware system consists of distributed programs that 
execute concurrently. 

Technical support of distributed processes 

Conference Management 

Communications Infrastructure 

Persistent Sessions 

Technical support of a graphics model 

Shared Visual Objects 

Object Concurrency Control 

Separate View from Representation 

Table 1. Roseman's requirements for a groupware toolkit 

Roseman et. al. categorized the requirements into two areas: the distributed process 
management and the graphical object management. The former area concerns coordinating 
multiple users while the latter deals with sharing views across a network. This 
classification is useful for deciding requirements for TALISMAN. 

Since our aim is to provide a toolkit for the groupwork environment where each view 
represents a user-dependent interpretation of the shared abstraction data, we isolate 
application-dependent requirements from the system requirements. For instance, suppose 
two users share data such that one user uses a scroll-bar widget while the other uses a text 
box widget to view the data. The process of one participant changing a value by scrolling a 
square box in a scroll-bar widget is difficult, if not impossible, to convey to another 
participant where the value is displayed just as a number. The two widgets add different 
semantics for manipulating the data. There seems to be a need for a level of abstraction 
higher than the widgets to show the process of changing values. Such a level of 
abstraction may depend on the context of the application. Thus, conveying the process of 
creating artifacts to express ideas is not always possible in a groupware toolkit if the 
process of creating the artifacts differs in one participant from another. 
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By examining the requirements shown by the past studies, we propose the following 
requirements for a toolkit that provides reusable components for synchronous groupware 
applications. 

• Isolate components for the view-dependent processing from components for both 
the collaboration management and for the application-dependent computation; 

• Provide an underlying mechanism to efficiently transmit messages among views 
and the conference management to change and update views; 

• Distinguish the globally propagated events from the events that are local to 
respective views; 

• Localize view-specific events within a view; 
• Provide an underlying mechanism to control input permissions for users; 
• Provide a mechanism to process late comers / early leavers of a groupwork session; 
• Allow gesture communications by displaying participants' telepointers; 
• Minimize the overhead caused by redrawing views; 
• Not hinder the capabilities provided by the underlying graphical user interface 

system; 
• Be capable of using the existing widgets; 
• Take advantage of the capabilities of the existing underlying system. 

3.2.   Assumptions 

In developing TALISMAN, there are several important assumptions that were made. 
These assumptions were needed to both simplify the system design and to satisfy the time 
constraints imposed on the research. 

TALISMAN assumes that the applications based on this architecture will be used in 
conjunction with other communication means such as voice over telephone lines. The 
gesture communications provided by telepointers are intended to supplement the voice 
communications. 

The present study assumes that users of the system work in a reasonably constructive 
manner. Users are in general assumed not to concurrently input to the system, especially 
on the graphical objects that correspond to the same abstraction data. In any groupware 
system that allows concurrent user inputs, data consistency is an important issue. Ideally, 
the system should update the state of data fast enough so that more than one user input can 
never occur at once. In practice, however, both the latency of network data communication 
and the overhead of updating the system state can allow multiple users to input at once. As 
a compromise, the system should take only the first input at a particular state of data, and 
reject the rest of the inputs until the system completes updating the state. Use of the voice 
communication may solve such a problem by negotiating before randomly changing the 
state of the shared data. 

TALISMAN also makes the assumption that the size of the shared abstraction data is 
reasonably small, and the data copying among objects does not cause significant overhead. 
Moreover, the structure of the shared abstraction data and the structures used in respective 
views are similar enough to avoid a large overhead in transforming data between a view 
and the shared abstraction data. 

TALISMAN further assumes that users who collaborate by using the system are not 
concerned about eavesdropping and hostile intrusions from outside. In order to support a 
secure collaboration environment, the system would need to provide security mechanisms 
such as user authentication and encryption of information transmitted across network. 
Although the present experimental implementation is not required to demonstrate such 
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features, the system should ideally be designed to show that the system can later 
incorporate modules that add these capabilities. 



CHAPTER   4. 

ARCHITECTURE   OF   THE   TALISMAN   GROUPWARE   TOOLKIT 

4.1. An  Overview 

Figure 1 depicts a conceptual architecture of our system. This structure extends the idea of 
the balanced control architecture for human-computer interface management from Hartson 
and Hix [7] to synchronous groupware applications. From the perspective of a low-level 
user interface system, the control structure provides an event-based, asynchronous 
dialogue mechanism. From the higher level view-point of the groupware system, 
however, the structure provides the balanced control architecture of a synchronous dialogue 
coordination system, where the user coordination mechanism is explicitly separated from 
the application-specific computation. The architecture provides high levels of application 
interface abstraction, the notion that Lane [11] claims to be essential to satisfying 
requirements for user interface adaptability across devices. 

call-back functions computation results 

Figure 1. The conceptual control structure. 

The entire system consists of four components shown in Figure 1: the View Dialogue, the 
Coordination, the Application-specific Computation, and the Global Controller. This 
control structure makes programming groupware easier because all but the Application- 
specific Computations provide reusable functions as described below. 

The View Dialogue component makes sure that the state of each view is consistent with the 
shared abstract data by relaying user inputs from the underlying graphical interface system 
to the Coordination component, and by updating the graphical display based on the abstract 
data. The Application-specific Computation component contains all of the code specific to 
the application. The Global Conttoller component provides the underlying mechanisms to 
facilitate communication among the other three components. 

For example, using a Tic-tac-toe game, the View Dialogue component manages graphical 
objects for each player, and displays the Tic-tac-toe game board with nine cells and game 



pieces. The Coordination component stores the states of the nine cells as the shared 
abstract data, and controls which player can play a piece. When a player places a game 
piece on the board, the View Dialogue component requests the Global Controller 
component to notify the Coordination component to update the state of the corresponding 
cell in the shared abstract data. The Global Controller component receives from the View 
Dialogue component where a player wants to place a game piece. It then invokes an 
application-specific Tic-tac-toe rule function to determine the state of the game. This 
includes code to compute whether a player is placing a piece at a valid place based on the 
states of the nine cells. If it is a valid move by the player, the Global Controller component 
notifies the Coordination component to update the state of the shared game cells. 

The TALISMAN prototype implementation based on the Garnet system takes advantage of 
the prototype-instance model, the Garnet invalidate demon mechanism, and the one-way 
constraint mechanism. The prototype-instance model ensures that values of every object 
are automatically copied to their instances. The Garnet invalidate demon mechanism 
enables the system to trigger a function when there are changes in an object's value. The 
one-way constraint mechanism enables an object to declare its relationship to other objects, 
and maintains the relationship as the values of other objects change [13,14]. 

Ethernet 

Groupware 
Server 

Garnet System 

\. xO 
Viewer Station 1 

(X Server) 

X Protocol 

^ ^o 
Viewer Station 2 

(X Server) 

Figure 2. A system configuration for the prototype implementation. 

TALISMAN was implemented as a multi-threaded centralized system where all the session 
management is performed in one process. It has one dedicated thread for each remote host 
to receive user input events from the host. The conventional X protocol messages are 
transmitted across a computer network. Figure 2 shows a conceptualized system 
configuration for a Tic-tac-toe game example. 

4.2.  The  View   Dialogue 

The View Dialogue component provides a reusable toolkit to display application data in 
different views for each user. Figure 3 describes the internal architecture of the 
component. This component consists of the view management and its underlying graphical 
user-interface system. Functions provided by the view management include data format 



conversions between shared data and graphical views, as well as updating views when data 
changes. 

Each instantiation of a view creates an instance of the built-in View Dialogue object  The 
object maintains a list of graphical objects that are used to show the view. A benefit of this 
design is such that each view representation is completely independent from other viewers 
Any redrawing operation of the graphical objects for a view representation is contained 
within the view, and does not cause the objects for other views to redraw. 

The Global Control component 

Method- 
calls 

r 
View 
Mana«emen 

Updating data 
wakes up 
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WMmmtkmm^^, 
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calls 

Method- 
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Input 
Processor 

 % 
Call-backs 

View 
Updater 

Method- 
calls 

Interactor 
Data 

Updater 

Input       Telepointer 
Controller  | Controller | 

Method-  AMethod- 
calls calls 

M,M,.),I »».IuMM■ ..I»j}>}>»jm.A^fAimimi-j^m :ir"r" 
Input     Telepointer 

Switcher jl   Object   J 

Garnet Graphical User Interface Objects 

Figure 3. A processing model of the View Dialogue 

In addition to the list of objects, the view management contains the following four 
subcomponents: Input Processor, View Updater, Input Controller, and Telepointer 
Controller The Input Processor accepts user input events from the Interactors L12 13J oi 
a corresponding Garnet graphical object, and sends a request to the Global Control 
component to notify the Coordination component to update the shared abstract data. 

After the Coordination component updates the shared abstract data, the notification 
propagates to all view instances. The View Updater accepts update-view notifications from 
the Global Control component, and changes values of graphical objects according to the 
value of die shared data by calling die Data Updater of the corresponding graphical objects. 
The Input Controller sets user input permissions of the view by notifying the Input 
Switchers in all the corresponding objects in the View Dialogue component. The 
Telepointer Controller creates and deletes the telepointing graphical object. 

As shown in Figure 4, a view may be an aggregate of multiple graphical objects. The View 
Dialogue component provides a variety of graphical "widgets" for synchronous, multiple- 
user sessions. For example, there is a generalized aggregate graphical tool to create cells 
that a viewer can use for games such as Tic-Tac-Toe and chess.   Presently, the widget 
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library contains following widgets: scroll-bars, radio-buttons, gauge meters, text boxes, 
cells, and a standardized graphical editor that provides cut, copy, and paste operations. 

Session S 

Shared Data X K 
View XI 

graphical 
/ object A 

View X2 1/1 
graphical 
object Bl 

"v    graphical 
^ object B2 

Shared Data Y \C 
View Yl 

graphical 
object C 

View Y2 
graphical 

Dl N object E 
graphica 
object D2 

Figure 4. Relationship of abstraction, view, and graphic objects. 
A session can contain multiple shared data, each of which feature multiple 
views. Views for multiple shared data may be viewed in a single window. 

In order to implement efficient run-time communication among these sub-components, the 
Data Updater and the Input Switcher of the widgets respectively provide uniform external 
interfaces. In the Garnet system, updating value representations of graphical widgets 
means setting values of different widget component names and types, depending upon 
types of widgets. For example, a scroll-bar widget takes an integer while a radio-button 
widget takes an enumerated data type. The Data Updater assumes the task of converting a 
data type used for the abstraction data to the data type used in specific widgets. The Data 
Updater effectively isolates widget-specific information from the view management. If the 
abstraction data is an integer type, the Data Updater for a text box widget converts the 
integer into a character string, and sets the string to an appropriate widget component. The 
Data Updater has a widget-specific mechanism. 

The Input Switcher provides a level of convenience similar to the Data Updater but from the 
input control perspective. The Input Switcher controls whether to allow user inputs on a 
particular widget. Since a name of widget component that sets user input control varies 
across different widget types, the Input Switcher provides an interface at a higher abstract 
level to set input state of widgets with two parameters: name of a widget and an input state 
of the widget. The Input Switcher has a simple mechanism that sets a boolean value to a 
widget-specific component. 

In the present TALISMAN implementation, the Input Switcher takes only one boolean 
input parameter by which the view management can specify the current user input status for 
a specific widget. Consequently, application designers can easily change the selection of 
widgets without affecting the rest of the system. Moreover, TALISMAN can accommodate 
any existing Garnet graphical widgets and objects simply by adding the Data Updater and 
the Input Switcher interfaces to them. 
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4.3.   The   Coordination   Component 

The Coordination component contains modules for collaborative session management, 
shared abstract data management, floor control, and telepointer control. The component 
provides high-level, reusable functions in all four areas. 

As shown in Figure 5, the component contains four subcomponents: the Session Manager, 
the Shared Data Manager, the Floor Controller, and the Telepointing Manager. The 
Session Manager controls the beginning and ending of a collaborative session. It also 
provides services so users can join and leave an on-going session. The Data Manager 
accepts requests for changes to shared data, and updates the shared abstract data. It then 
notifies the Global Control component of the new state. For example, in a Tic-tac-toe 
game, when the user clicks on a square, the View Dialogue component detects the user 
input event, and determines in which cell the user wants to place the game piece. The View 
Dialogue then tells the Global Control component which cell needs to update its state. After 
calling a Tic-tac-toe rule function to validate the move, the Global Control component 
requests the Data Manager to update the shared abstract data. After updating the shared 
abstract data, the Data Manager notifies the Global Control component about the change of 
the data. The Global Control component invokes a Tic-tac-toe rule function to determine 
whether one player has won or the game is tie. The Global Control component relays its 
result to the Data manager. When someone has won or it is a tie, the Session Manager is 
notified by the Data Manager that the session should end. The Session Manager requests 
the Floor Controller to terminate all the user input permissions. 

The shared data is managed in an abstract form. In TALISMAN, the form of the abstract 
data is not necessarily identical to the structure used to represent views. In the case of the 
Tic-tac-toe game, the shared abstract data is simply a list of nine integers, each integer 
representing a status of one of the nine cells. On the other hand, for a shared drawing tool 
where all viewers share replicated graphical drawings, a shared abstract data can be a list of 
names of equivalent graphical objects among viewers. Reusable functions are available to 
manage different types of shared abstract data. 

Figure 5. The architecture of the Coordination component 
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The system instantiates one Floor Controller for each instance of shared data. The 
component controls the floor by notifying the Input Controller subcomponent of each View 
instance to set whether its viewer is allowed to input data. The Input Control 
subcomponent in turn notifies the Input Switcher subcomponent of the View Dialogue 
component to change input permission status of specific graphic objects. Examples of the 
provided options for the initial settings for floor control include: allowing only the first 
registered user to input, allowing all initial users to input, allowing a predetermined number 
of users to input, and allowing no one to input. Examples of reusable functions for 
subsequent floor control include "taking turns" (alternating input permission among users), 
granting exclusive floor rights to one user all the time, and enforcing user priority levels in 
determining the turns. The idea of providing the interchangeable floor control mechanisms 
has the same spirit as the floor control protocols in the SHARE system [5,16]. 

The Telepointing Manager is responsible for displaying telepointers in windows so all 
users can see where each other's cursors are. The telepointing manager interfaces with the 
View Dialogue component to display the actual telepointer objects. When a user is 
registered in a collaborative session, the system creates a telepointer object for the user. 
The object consists of a graphic object to represent the user's telepointer and an Interactor 
to capture movements of the user's cursor in the window. In order to display the user's 
telepointer image on corresponding windows of other users, the system creates an instance 
of the telepointer object, and adds the instances as a component to each of the other users' 
window. Due to the automatic inheritance of values from prototype to instance, the remote 
telepointer moves whenever the viewer moves his telepointer. The prototype-instance 
model of the Garnet system makes such a remote telepointing mechanism very easy to 
implement. 

A unique feature of this design is that the entire mechanism for the remote telepointing is 
embedded in the system, and is hidden from the application. The system only requires the 
application designer to declare whether and how a viewer's telepointer should be shown to 
other viewers. There are four options for each user concerning remote telepointers: 

• whether or not to display telepointers of other users on a user's window; 
• whether or not to allow other users to display a user's telepointer. 
From die Garnet perspective, the telepointers are implemented by a two-point 

interactor that is always running within application's windows to get the mouse cursor 
positions. The present implementation takes advantage of the multiple priority-level feature 
of Garnet. Interactors for all the telepointing graphical objects wait and run at a special 
priority level, which is higher than all other graphical objects. By setting the interactor for 
the telepointing graphical objects to also pass input events to lower priority-level 
interactors, the interactors for the telepointers always receive input events, and then the 
other interactors still receive input events when needed. As a result, the remote telepointers 
move even when another interactor is running. This feature is necessary to implement 
gesture communication while one user is drawing graphical objects in shared drawing 
applications. 

4.4.   The   Application-specific   Computation   Component 

The Application-specific Computation component provides specialized code required to 
execute the application system. Examples in a game application such as a chess include 
validating piece movements and determining the end of a game based on the status of cells. 

Presently the component provides call-back functions to the Global Control component for 
following operations: 

• pre- and post-processing of a collaborative session; 
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• pre- and post-processing of abstract data-updates; 
• pre- and post-processing of changing a session floor (i.e. changing turns). 

In addition to the above call-back functions, all the reusable components are 
customizable to specific application needs. For example, if an application requires some 
unique computations to determine when to allow data inputs, an application developer can 
supply a function to the User Coordination component. 

4.5. The  Global   Controller   Component 

The Global Controller represents a core underlying mechanism for inter-component 
communication. A typical control sequence is as follows: 

• wait for and receive a user input from the View Dialogue; 
• invoke Application-specific Computational functions to analyze the input; 
• invoke Coordination functions to update shared data and user states; 
• provide feedback for the updated state to the View Dialogue component. 

Since the sequence is similar across different application domains, the Global Controller is 
a reusable component. 

4.6. Data   Transmission 

In any synchronous groupware, the communication overhead between a view and the 
shared data management is a deep concern. The system must maximize the efficiency of 
the data transmission. One of the main causes of the overhead is transforming data types 
during the ttansmission. To reduce marshaling and de-marshaling required for transmitting 
the shared data, all communications among the four components use the data format of the 
shared data in the TALISMAN architecture. This strategy eliminates the data type 
conversion between a view data and the shared data type at the Coordination component 
side. For example, when a view is sending the data update request, its View Dialogue 
component transforms the data into the data type used for the shared abstraction data before 
sending it to the Global Control component. Similarly, when all the views are notified of 
data updates, each View Dialogue component converts the abstract data type into a view- 
specific data type to update its view. The Data Updater in the View Dialogue further 
converts data types if necessary to set new values in specific widgets. In both cases, the 
View Dialogue component is responsible for the data type conversions. 

The uniform data format during the data transmission also simplifies the Coordination 
component because the component never has to be aware of data types used in views. 
Since there are not independent intermediary data converters, how a view treats the shared 
abstraction data is completely encapsulated within the view. All the views however must 
know the data format used to store the shared abstraction data. 
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CHAPTER    5. 

IMPLEMENTATION     ISSUES 

5.1. Centralized   Data   Management 

In the present TALISMAN implementation, a user input does not directly update the view. 
Only the view Update Notice messages cause the view to update its data representation. 
Figure 6 depicts a typical situation of centralized data communications. When View 1 
detects a user input, it transforms the input data into the Update Request of the shared 
abstraction data. View 1 then requests the Coordination component to update the shared 
abstraction data. After the Coordination component updates shared abstraction data, the 
Update Notify message is received by all the views, including View 1. This causes the 
views to update their view representations. 

An inherent problem with this scheme is the possible time lag between the time that a user 
inputs, and the views update themselves. The TALISMAN implementation attempts to 
minimize the delay by relying upon the invalidate-demon feature of the object system in 
Garnet to propagate the Update Notice messages. The invalidate-demon is normally used 
in Garnet for the purpose that requires efficient processing, namely to trigger automatic 
redraw of graphical objects [14]. The TALISMAN implementation takes advantage of this 
Garnet feature since it is optimized for efficiency. 

5.2. Object  Inheritance   Properties  and  the   Invalidate  Demon 

Synchronizing updates between the shared abstract data and the views require that there is a 
two-way link between an instantiation of the shared data and a corresponding view. In one 
direction, we use call-back functions. In the other direction, we use an "invalidate demon" 
mechanism combined with the prototype-instance inheritance property. 

Shared 
Astraction 

Data 

View 1 (user input) 

View 2 

View 3 

Update Request 
through function calls 

Update Notice 
through 
invalidate demons 

View 4 

Figure 6. Update data flow diagram 
View sends a data update request; all the views are then notified. 
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To reflect a change of a user's view to the corresponding shared abstract data, the system 
uses call-back functions. The Interactor invokes an appropriate call-back function 
whenever a user clicks on the game board to place a game piece. The call-back function 
converts the view-specific format of data to the format of the shared data, and calls a 
notifier function to update the shared data. These functions are provided by TALISMAN. 

Shared Abstract Data Object 
containing shared data. 

:is-a 

View Object inherits the shared 
data and the mapping function. 

View Prototype with a mapping 
function to convert data and update 
graphical objects. 

Figure 8. Multiple-inheritance of the View object 

To update views of all users based upon the shared abstract data, the system uses the 
"invalidate demon," which is inherited to each view object from the view prototype. All 
view objects are instances of both the shared data prototype and the view prototype. Since 
each view can have a different representation of the data, the data conversion between the 
shared abstract data and the view can be different in each view. By making each 
instantiation of view object multiply inherit both the shared data object and the view object, 
the shared data is inherited to each view instantiation automatically. Any updating activity 
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on a shared data invokes the demon functions in all corresponding view objects. 
Subsequently, each demon function converts the data format from the shared abstract data, 
and updates a view data. Again, the demon functions are provided by TALISMAN. (See 
Figure 8.) 

The benefit of multiple-inheritance is not only to use the "invalidate mechanism" for data- 
update propagation, but also to confine the process of updating a view within the View 
Dialogue component. Because the view object inherits from the shared data value, the 
component does not need to access the Coordination component to retrieve the updated 
value of the shared data. The view object refers to the data value locally, and calls 
appropriate Garnet graphical objects to update their values. 

View 1 View 2 Shared Data 

Update 
<Call 

Update Notify 
^- <Demon> 

(Updates view) 

Request 
Back> 

Update Notify 
^    <Demon> 

(Updates view) 

Application-specific 
Computation 

Pre-update Validation Request 
<Call Back> 

Reply 
(Updates data) 

Post-update Validation Request 
<Call Back> k 

Reply 

(Updates floor status) 
tune 

Figure 9. Example of a typical message timing chart while updating data. 
The Update Notify is sent implicitly by the invalidate demons. The format 
of data in the transmitted messages is equivalent to the format of the shared 
abstraction data. The order of sending the Update Notify messages is 
arbitrary. 

This implementation uses the call-back mechanism to detect and process changes in the 
views' representations. If a constraint system allows values of objects to have constraints 
from states of more than one object, unlike Garnet's, then the object constraint mechanism 
could be used instead. In the present object system for Garnet, only one formula can be set 
in one slot. Moreover, a user of the object system in some cases cannot even set one 
formula to a slot because one "hidden" formula is already set for Garnet's internal use. 
Such cases include a data value slot of a Garnet graphical widget. If you could establish a 
constraint so that the abstract data depends on values of all the view objects, then you 
would not need to use demons. The system would then update the shared abstract data 
whenever one of the views change the value. 
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5.4. Designing the Format of the Shared Abstraction  Data 

As Hill states[9], the format of the shared abstraction data is critical to ensure that 
synchronous groupware will work. And, designing the right format is very difficult. The 
shared abstraction data must contain all the necessary information for all the views to 
represent the data. While the Rendezvous system [9] eased the format design effort by 
suggesting that the shared data format reflects the data structure seen in the real world, the 
TALISMAN architecture takes a different approach. The TALISMAN system encourages 
that the data be as abstract as possible, and not retain physical semantics. For example, in 
the Tic-Tac-Toe game application, a groupware designer does not have to retain the 
semantics of sharing a three-by-three rectangular cells with circle and cross pieces. 
Instead, the designer can see the cells as a list of nine integers each of which expressing a 
state of the corresponding cell. Construction of game board semantics is the responsibility 
of each view of the game. 

This approach of designing the shared abstract data could result in developing very 
interesting applications. For example, one could design an interactive entertainment 
application where multiple players can play with one another while each player thinks they 
are playing completely different games. For example, each of three players could be 
playing a slot machine, a roulette, and a card game respectively, and all of them are actually 
playing against one another. This strange yet fun game is possible because all of the 
players have the same objective: to get a certain combination of numbers. All the semantics 
of the shared numbers are value-added at the view level. 
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CHAPTER   6. 

DEMONSTRATIONS    OF    SYNCHRONOUS    GROUPWARE    SUPPORT 

6.1.   Multiple-Views   on   Shared   Data 

6.1.1. Description 

As the most primitive demonstration of the system, a simple program was written that 
displays a single shared abstract number in four different view representations. The demo 
displays four windows at different hosts across network. Each of the windows displays a 
different type of graphical widget to represent the value of the shared data. The four types 
of the widgets are scroll bar, gauge meter, radio-buttons, and text box. The system can 
display these windows on separate screens. Users can change the value of the shared data 
by manipulating the graphical widgets in any of the windows. However, the system takes 
a user input from one window at a time, and changes the input window every time that a 
user changes the value. Effectively, the system enforces that the users to take turns. For 
this simple example, there is no application-specific computation. A change made by an 
authorized user is immediately reflected to all other users. A sample window image is 
shown in Figure 10. Four graphical widgets are a scrollbar, a gauge, a radio-box and a 
text box. 

6.1.2. Design 

To make the design of the system as simple as possible, the shared abstraction data for this 
demonstration has an integer number type. Figure 11 depicts relationships between the 
shared abstraction data and the views. Four views refer to an integer stored in the shared 
absttaction data object. For the scroll-bar and the gauge widgets, the shared data value is 
directly set to the respective widgets to update view representations. If a widget requires a 
data type different from the shared abstraction data, views provide a type converter to 
convert the data type. In the case of the text box widget, the type converter converts an 
integer type to a string type before setting the value to the widget. Similarly, the type 
converter that is associated with the radio-button widget converts the integer type of the 
shared data value to an enumerated data type before setting the data to the widget. 

A benefit of this design is such that the programmers can use the existing Garnet graphical 
widgets and objects to display the view-dependent values without any internal 
modifications. The only change required for these widgets is to add type converter routines 
to transform the data type (an integer) used in the shared abstraction data into the data type 
used by the widgets. Programming languages such as LISP and C provide convenient 
functions to convert a type from one to another. The data types for the widgets in the 
views are determined by the corresponding original Garnet widgets. 
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Shared Abstraction Data a shared value 
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Figure 11. Shared Abstraction Data and View representations for the multiple-view 
representation. 

6.2.  The  Tic-Tac-Toe   Game 

6.2.1. Description 

The Tic-Tac-Toe Game application allows two players at remote locations to play a tic-tac- 
toe game, while observers may also watch the game without interfering with the players. 
The game consists of one window for each player or observer. The contents of the 
window is customizable to a particular view. For example, one viewer may display the tic- 
tac-toe game pieces as circular and cross shapes, while another viewer may observe the 
pieces as the colors of the cells. Only the players are allowed to place pieces on the game 
board. Observers cannot place any pieces on the board. The system enforces that the two 
players take turns. 

In addition to the multiple-view capability of the TALISMAN, the Tic-Tac-Toe game 
demonstrates the following three aspects of the synchronous groupware toolkits. First, it 
requires the floor control mechanism; two players take turns. Second, the game application 
demonstrates the clear separation of the application-specific computation from the toolkit by 
using game rule functions to detect the illegal piece placements as well as the end of the 
game. Third, the game demonstrates user gestures through telepointing. The telepointers 
of all users are displayed on all the other windows. 

6.2.2. Design 

The Tic-Tac-Toe application displays one window for each player, and a third window for 
a viewer who just observes the game. The shared data is a list of nine integers, each 
representing a status of one of nine cells on the board. (See Figure 12.) All other 
information about the representation of the game, including player identifications and uit 
and reset buttons, are viewer dependent. Figure 13 shows a sample window for a player. 
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A Structure of Shared Abstraction Data 

Al A2 A3 B1B2 B3 Cl C2 C3 

Al Bl Cl 

A2 B2 C2 

A3 B3 C3 

Board View 

Figure 12. Shared Abstract data and View Data for a Tic-tac-toe application. 
A combination of a letter and a number indicates a code name for a 
corresponding cell and a list element. 

The application uses reusable functions extensively to minimize the programming required 
for the application. First, the Tic-tac-toe application uses a built-in widget to graphically 
represent a 3-by-3 cell for a game board. Next, the application uses a reusable function to 
set a floor conu-ol policy, which in this case is to alternate the input between two users after 
a player makes a move. Finally, the application uses the telepointing mechanism to show 
the telepointers of all of the players. 

There are two application-specific computations in the Tic-tac-toe application. One is to 
validate moves made by the players. This function is invoked every time one player places 
a piece by clicking on a square of the game board. A player cannot place a piece in a cell 
unless the cell is empty. The other application-specific computation is to determine the end 
of a game. A method called "check-session" looks at the shared data, and decides whether 
the game is over. The parameter for the function is the user who most recently modified 
the shared data, and returns True if the game should end. This function is called after an 
update to the abstract data. That is, the game status is monitored whenever a player places 
a piece on a cell. When the end of the game is announced by the function, the system no 
longer allows any players to place pieces in the cells. 
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WA 

Figure 13. A Tic-Tac-Toe game. The telepointers for the opponent and one 
spectator are represented by the side-ways "V"s. The large thin circle reminds the 
player that this player places circle pieces. In actual screen, windows are colored to 
indicate whether it is the player's turn to place a piece. 

Observers of the game can be easily added by instantiating another view with read-only 
permission to the game. All the participants, including observers, can remotely display 
telepointers on screens of the other participants. 

6.3.   Shared   Drawing   Tool:   GarnetDraw+ 

6.3.1.    Description 

We have also modified a single-user graphics drawing tool, called GarnetDraw, to be a 
shared drawing application. The tool consists of a drawing window, pull-down menus, a 
palette of the shapes that can be drawn, and object attributes palettes for color and line 
style. (See Figure 14.) Only the drawing window is shared among users. The menus and 
palettes may differ among users. This sample application demonstrates the capability of 
TALISMAN to differentiate the shared data management from the view-dependent data 
management. Moreover, this application requires more complex shared abstraction data 
structure than the previous Tic-tac-toe application. The shared drawing tool requires the 
system to maintain replicated graphical objects across multiple displays. In addition to the 
attributes of graphical objects, the system must maintain such parameters as the drawing 
order and creation / deletion of the objects. Finally, the most significant difference of this 
sample application from the Tic-tac-toe game is that this application must support 
concurrent manipulations of graphical objects by users. Because this application must 
support concurrent user inputs, maintaining the data state consistency across views 
becomes very difficult. 
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Figure 14. GametDraw Application for Multiple Users 

6.3.2.    Design 

In our sample implementation, the shared abstract data takes the form of a list of the 
corresponding graphical objects used in different viewers. Thus, for each graphical object 
in one view, there is a corresponding object in the other view, and the abstract data contains 
a list of these associations. As users draw more graphical objects, the list grows. Each 
combination also contains an identifier for the user who created or last modified the 
graphical object. When the View Dialogue component updates the respective views, each 
view copies attributes of the most-recently-changed graphical object to its own object. 

Because this is a modification of a single-user application, it is important to minimize the 
changes necessary to the original flow of the program. Nevertheless, there are several 
major modifications. First, an array of the viewer objects was added to support an 
arbitrary number of users. These objects contain all the view-dependent information, 
including viewer window identifiers and view-specific interactors. Second, the user input 
notification functions were added to notify for creating, modifying, and deleting graphical 
objects to the Coordination component. Third, a function was added to update a view 
based on the changes made to the shared abstraction data. This function is triggered by the 
invalidate demon. The demon code resides in the TALISMAN toolkit, and not in the 
application. Moreover, the multiple-user widgets are created for the standard-edit widgets 
to notify the shared data abstraction whenever a user attempts to edit a graphical object in 
the view. 
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Since the data structure does not denote the order of drawing graphics, this design does not 
consider supporting late comers to the shared drawing session. Whenever a viewer 
modifies a graphical object, the entry that contains the object is moved to the beginning of 
the list. When a viewer creates an object, a new entry is created at die top of the list. In the 
above example of Figure 15, the Viewer C just moved the circular object to the bottom of 
the drawing, and die result is replicated to all other viewers. When the invalidate demons 
invokes view updater functions, these functions refer to the first combination of the object 
names in the updated shared list. After identifying the last modified object and the object 
corresponding to its own view in the combination, the function copies all the graphical 
attributes of the last modified object to the view's object. When the Command column 
contains either ToTop or ToBottom command type, then each view moves its object to the 
appropriate order for drawing. 

Shared Data List 

Object # Object* Object* Command Last Modified 

Circle-1 Circle-2 Circle-3 ToBottom Viewer C 

Trian-1 Trian-2 Trian-3 NIL Viewer A 

Rect-1 Rect-2 Rect-3 NIL Viewer B 

(T c ft£. sy>yf 

'f:/:*1 l 

Viewer A Viewer B Viewer C 
Figure 15. Shared Data and Replicated Views 

This shared drawing tool allows participating users to draw graphical objects concurrently. 
There is no floor control to enforce a sequence of inputs by multiple users. There are two 
cases of concurrent operations. First is the case where more than one user operate on 
different graphical object. This case includes different users creating new graphical objects 
at the same time. The system must reflect all the changes made by users, including creating 
new objects. The TALISMAN system can support this because the system guarantees to 
invoke the abstraction data update demon exactly once for each view per each abstraction 
data update operation. A second case is multiple users modifying the same objects at the 
same. Although a use of the application in conjunction with telephones and other 
communication methods may avoid such a situation, such a situation is certainly possible to 
occur.   Because of the exactly-once guarantee of the demon invocation, all the views 
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always have the latest changes made to an object. For example, if two users try to resize a 
same rectangle, whoever finishes the resize operation later determines the final size of the 
rectangle. 

6.4.    Evaluations 

6.4.1. Scope of Evaluations in This Study 

The most reliable method of evaluating a toolkit is to build as many applications as 
possible, and determine how the toolkit actually has reduced the development time and 
modification time of the application software. Unfortunately, the present study does not 
have any full-scale evaluation of the model because of the time constraint of this thesis. As 
the minimal evaluation of the toolkit, three sample applications have been developed to gain 
some idea of how much this toolkit actually contributes to the groupware development. 

6.4.2. Reduction  of  Code  using  TALISMAN 

By providing all the graphical widgets as a widget library, toolkits can reduce the amount 
of coding for the application program. We compare two programs to do the single task of 
Figure 10; one does not use codes provided by TALISMAN and the other does. Result 
shows that the number of functions written in the application program decreased. For 
example using the Multiple-Views sample program, the number decreased from 17 to 7. 
The number of customized schema explicitly created in the application program decreased 
from three to none. The application programmer has to create the following instances using 
TALISMAN: an instance of a window schema, an instance of a schema to manage the 
shared abstraction data, one instance of a schema to store the shared abstraction data, four 
instances of the view schema, and one instance of each of the four widgets. TALISMAN, 
as well as Garnet, provides all the prototypes. 

In the Tic-Tac-Toe game application, the number of lines of code for the game rule 
functions accounts for 15% of the entire Tic-tac-toe application code. The rest of the 
application code for the game is mainly to create instances of windows, player labels and 
game pieces by using Garnet graphical objects. 

6.4.3. Converting   A   Single-User   Application 

Another way of measuring effectiveness of a groupware toolkit is to test the ease of 
converting a single-user application to a groupware application. We have found from this 
experience that the difficulties of converting a single-user application to a groupware one 
are no more than the difficulties of converting a data structure-oriented program to an 
objected-oriented paradigm, because architectural components for the TALISMAN system 
are easily identified once an application program is designed from an object-oriented 
perspective. The hardest part of creating this sample application was indeed isolating the 
code used for view-dependent graphical widget management from the code used for the 
shared work space. As in typical program source codes, there were too much hacking 
using global variables. The first task of modifying the code was to eliminate most of the 
global variables to encapsulate one component from another. While we did not make any 
changes in the code with respect to the way each user interacts with the system, we added 
code to maintain consistency across replicated views. The types of the actions by each user 
are creating and deleting of an object, changing in the location, changing the color and the 
line width of the objects, and moving an object to top and bottom. 
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We have compared a single-user, one window version of sample applications to the same 
application based on TALISMAN for multiple users. For example using the Tic-Tac-Toe 
game, the TALISMAN version added an extra 30% of code to make the application 
multiple-user purposes. The amount of code for the GarnetDraw application increased by 
16%. The increase in the code comes from adding application-specific mechanisms to copy 
and create drawing objects based on states of the abstraction data. 

6.4.4. Limit of the TALISMAN  Model 

The group drawing application has also shown that the TALISMAN cannot provide 
reasonable responses when the size of the abstraction data becomes very large. Moreover, 
significant performance degradation occurs when more than three users operate 
simultaneously. This performance problem results not only from the high overhead of 
processing multiple views in TALISMAN but also from the communication overhead at the 
X Protocol level. 

Moreover, we are yet to investigate how much complexity in the structure of the abstraction 
data the TALISMAN model can tolerate. What is the logical limit of the model? The 
present implementation of the model implicitly assumes that each abstraction object is 
independent of one another. The implementation does not allow a state of one abstraction 
object to affect that of another abstraction object. If a state of an abstraction object is 
dependent on one another, a mechanism to manage abstraction object update notifications 
becomes more complex. An update of one abstraction object needs to be forwarded not 
only to its corresponding View Dialogue components but also to other abstract objects that 
depend on the state of the abstraction object. 

6.4.5. Extensibility  and   Reusability  of  the  Application   Software 

While prototyping the system, we strived to make transforming one application to another 
conceptually similar application relatively easy. For example, transforming the Tic-tac-toe 
game to a chess game basically requires the following four modifications: First, the 
function to check for the end of the game must be modified according to the rules of chess. 
Second, new Garnet graphical objects need to be created to replace the circle and cross 
labels. Third, the cell size must be changed from three by three to eight by eight. The 
shared abstract data type can be simply changed to be a list of 64 integers. Fourth, 
application-dependent rules such as chess-piece movements and stale mate detection must 
be defined. 

There are two key issues here. First, all the underlying components, including the floor 
control, the management of the shared data, and the remote telepointing mechanism, are 
reusable for the new application without any modifications. Also, the TALISMAN 
architecture clarifies what functions need to be customized to a particular application. 
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CHAPTER   7. 

FUTURE   WORK 

7.1. Introduction 

While the present work has successfully demonstrated the feasibility of the high-level 
architecture for a synchronous groupware application, more research is necessary to 
investigate the robustness and portability of the TALISMAN architecture. This chapter 
describes the possible future work for this thesis from two perspectives: engineering 
enhancement and fundamental research. The engineering enhancement issues concern 
immediate engineering work. Their common purpose is to extend this thesis work by 
further testing groupware applications based on TALISMAN, as well as to refine the 
TALISMAN architecture where necessary in the short-term. The fundamental research 
issues, on the other hand, address long term studies necessary to understand how toolkits 
can help create synchronous groupware applications 

7.2. Engineering    Enhancement 

There are several engineering enhancement issues. All of the issues have a common 
purpose, which is to test effectiveness of the TALISMAN architecture with more 
groupware applications. 

Our most immediate plan is to implement TALISMAN using a new user interface system 
that is a successor to the Garnet system. The most apparent difference of the new 
underlying system from Garnet is that the new system is written the C++ language, 
whereas Garnet has been written in LISP. Accordingly, we will implement our new 
TALISMAN in C++. We will benefit from the C++ implementation because the C++ 
language features better access to the operating system and to the network than LISP. 
Implementing in C++ paves the road for long-term investigations. For example, the new 
system will allow us to have design options for both central and distributed processing 
models for a future research. The present TALISMAN is based on the central architecture 
simply because the LISP language does not provide flexible mechanisms for inter-process 
communications across the network. 

The Garnet successor will also provides new features that TALISMAN may take advantage 
of. For example, the new object system allows us to set more than one formula in a slot to 
define constraints among objects. The Garnet system only allows us to have one formula 
in a slot. By using this new feature, we may be able to establish a constraint so that the 
abstract data depends on values of all the view objects. This can effectively eliminate uses 
of demons. The constraint system will update the shared abstract data whenever one of the 
views changes the value. Figure 16 sketches the idea of using a constraint mechanism to 
maintain states of a view and its corresponding graphical representations. 
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Figure 16. An example of using a constraint mechanism to maintain view and 
graphical objects. 

Using the new, more capable successor system, we need to evaluate TALISMAN with 
more groupware applications. We need to build more sample applications to more clearly 
determine limitations of the TALISMAN architecture. The task of building applications is 
twofold. First is to develop more toolkit libraries for TALISMAN. The libraries include 
widgets for different floor control policies, as well as abstraction prototypes for a bigger 
variety of shared data types. Presently, there are only three widgets for floor control 
policies and two prototypes for abstraction objects. Second, we need to evaluate the 
system by using more complex structures for shared abstraction data. One of examples of 
more complex shared objects is playing cards, each of which has two sides. In card games, 
different card players have different views of card stacks on the table. There are cards that 
must be seen only by their owner, and there are other cards that are seen by all the players. 
There are also cases where one card changes its state between the two. We need to 
investigate how moving the objects between private and shared status will make the 
management of shared abstraction data more complex. We are yet to investigate whether 
the TALISMAN architecture can sustain more complex data management. 

7.3.   Fundamental    Research 

There are at least three issues that require a long-term, fundamental research. First, we 
need to investigate whether the TALISMAN architecture is robust enough to work in the 
distributed processing environment. Under such an environment, components of 
TALISMAN are located in different computers across network. The distributed 
implementation may contribute to a better performance through load balancing among 
computers as well as through an optimization in message protocols. The present 
TALISMAN implementation has no control over optimizing networking protocols because 
the standard X-protocol messages travel through the network. Meanwhile, one of the key 
issues in implementing TALISMAN in the distributed processing environment is to 
synchronize concurrent operations of users working together. Some form of an event 
synchronization mechanism is required to maintain states of the collaborating users 
consistent.   It is yet to determine whether the abstraction level of the TALISMAN 
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architecture presented in this thesis is appropriate if we distribute the architecture 
components across the network. 

Another long term agenda is to design and implement a high-level rapid prototyping 
environment of synchronous groupware applications based on the TALISMAN 
architecture. The prototyping environment should include interactive human-interaction 
designing tools and simulation tools to rapidly test the design. These tools extend the 
notion of the current user-interface builder tools to design multi-user interactions. In 
addition to laying out graphical user interface objects, such groupware building tools would 
allow designers to specify an abstract data representation, view representations, and how 
multiple users should interact with one another (e.g. floor controls). 

Since almost all of today's software applications categorize themselves as single-user 
applications, it will be very useful to provide groupware design tools that aid software 
engineers to convert these single-user applications to multiple-user applications efficiently. 
This thesis has found that the conversion process of a single-user application to a multi- 
user application in TALISMAN is similar to that of redesigning a program based on the 
object-oriented approach. Once the application is constructed in an object-oriented manner, 
it becomes relatively easy to add multiple-user mechanisms to it. The conversion tools 
should facilitate application designers in separating modules for view-dependent processing 
from modules for managing shared data. Moreover, such tools should be able to help 
design structures for shared abstraction data objects. 
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CHAPTER   8. 

CONCLUSION 

8.1. Introduction 

This thesis has demonstrated that the concept of coordination independence in addition to 
dialogue independence is very useful to efficiently design synchronous groupware 
applications. This chapter describes contributions made by this thesis from two 
perspectives, namely technology contributions and system-level contributions The former 
perspective concerns contributions made by specific mechanisms within the TALISMAN 
architecture on such issues as floor conttols and multi-user coordinations. System-level 
contributions, on the other hand, describe contributions made by this thesis at a more 
abstract level. 

8.2. Technology   Contributions 

Technologically, this thesis has made the following three contributions. First this thesis 
has demonstrated that the concept of coordination independence along with dialogue 
independence is useful to design a toolkit for synchronous groupware applications. The 
coordination independence includes separations of both floor control and remote 
telepointing mechanisms from application codes. There is no need to rewrite floor control 
policies if TALISMAN supports desired policies in reusable components. 

Second this thesis has demonstrated usefulness of demons and object inheritance for 
controlling multiple views. These object system mechanisms provide efficient propagation 
of update events of states. Moreover, we have found that object constraint mechanisms are 
extremely useful for managing remote telepointing objects. 

Third TALISMAN provides several different types of reusable components for 
synchronous groupware applications. TALISMAN separates an application into the 
following four components: View Dialogue, Coordination, Application-specific 
Computation, and Global Controls. All the components except the application-specific 
computations provide reusable functions and objects for different applications. These 
reusable functions and objects include floor control, telepointing, and shared abstract data 
manipulations. The reusable components are beneficial for following purposes: 

• floor (user input) controls; 
• floor initializations; 
• remote telepointing management; 
• data type conversions by views; 
• data communications between the shared abstraction data object and views. 

8.3.    System-level    Contributions 

This thesis has made a system-level contribution by presenting an architecture with high- 
level, reusable components. This thesis also has demonstrated that these reusable 
components help create synchronous groupware applications efficiently. The central idea 
behind the design is to combine the dialogue independence and the coordination 
independence. Designing an architecture for synchronous groupware applications requires 
a careful consideration of both dialogue independence and user coordination independence. 
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Application developers can reduce the amount of programming by using such reusable 
functions. 

This thesis also contributes at the system-level by providing some guidelines for converting 
a single-user application into a groupware application. This thesis has found that a system 
designer must identify and isolate global data processing from view-dependent processing 
in a single-user application. The design approach was found to be similar to object- 
oriented design process. All the processes that concern one viewer must be encapsulated 
within the viewer, while all the information that is shared among viewers must be 
represented as an abstraction object. The key issues of efficiently converting a single-user 
application to a multiple-user application include avoiding excessive global variables and 
encapsulating information within objects that use the information. Moreover, the concept 
of object inheritance is very useful to reduce the amount of coding for different views. By 
representing common features of views as a prototype object, an application developer only 
needs to add view-specific codes by inheriting the common features from the prototype 
object. 

32. 



REFERENCES 

1 Tordv J R Hill R D Singh, G., Vander Zanden, B. Report of the "Linguistic 
Support" Working Group. Languages for Developing User Interfaces, Jones and Bartlett 
Publishers, Boston, 1992, Chapter 21. 

2 Dewan P Choundhary, R. Primitives for Programming Multi-User Interfaces. In 
Proceedings of the U1ST '91, ACM, New York, 1991, pp. 69-78. 

3 Gust P Shared X: X in a distributed group work environment. Unpublished paper 
presented'at the Second Annual X Technical Conference, January, 1988. 

4 Gibbs, S. J. LIZA: An Extensible Groupware Toolkit. In CHI '89 Proceedings, New 
York, 1989, pp. 29-36. 

5 Greenberg, S. Personalizable Groupware: Accommodating Individual Roles and 
Group Differences. In Proceedings of the 2nd European Conference on Computer 
Supported Cooperative Work (EC-CSCW '91), Klewar Press, Amsterdam, 1991. 

6 Greenberg S Roseman, M., Webster, D., Bonnet, R., Issues and Experiences 
DeÄ^ta^menting Two Group Drawing Tools, ^e^gsof the 25th Annual 
Hawaii International Conference on the System Sciences, 1992, IJU-IMJ. 

7. Hartson, H. R, Hix, D. Human-Computer Interface Development, concepts and 
Systems for the Management. ACM Computing Surveys, 21, 1 (March 198 J), >Ji. 

8 Hill R D Languages for the Construction of Multi-User Multi-Media Synchronous 
(MUMMS)Applications. Languages for Developing User Interfaces, Jones and Bartlett 
Publishers, Boston, 1992, Chapter 9. 

9 Hill, R. D. The Abstraction-Link-View Paradigm: Using Constraints to Connect User 
Interfaces to Applications, In Proceedings of CHI'92, 1992, 335-342. 

10. Kohlert, D., Rodham, K., Olsen, D., Implementing a Graphical Multi-user Interface 
Toolkit, Software - Practice and Experience, 23, 9 (1993), 981-999. 

11 Lane, T. G. A Design Space and Design Rules for User Interface Software 
Architecture. Carnegie Mellon University Technical Report CMU-LS-90-l/ö. 

12 Myers, B. A. Encapsulating Interactive Behaviors. In CHI '89 Proceedings, New 
York, 1989, pp. 319-324. 

13 Mvers B A et al. The Garnet Reference Manuals. Carnegie Mellon University 
Computer Science Technical Report CMU-CS-90-117-R4, October 1993. 

14. Myers, B., Giuse, D., Vander Zanden, B., Declarative Programming in a Prototype- 
Instance System: Object-Oriented Programming Without Writing Methods. SIGPLAN 
Notices, 27, 10 (1992), 184-200. 

15. Patterson, John F. Comparing the Programming Demands of Single-User and Multi- 
User Applications. In Proceedings of the UIST '91, ACM, New York, 1991, pp. 87-94. 

33. 



16. Roseman, M., Design of a Real-Time Groupware Toolkit, Masters Thesis, The 
University of Calgary, 1993. 

34. 



School of Computer Science 
Carnegie Mellon University 
Pittsburgh, PA 15213-3890 

Carnegie Mellon University does not discriminate and Carnegie Melion University is required not to 
discriminate in admission, employment or administration of its programs on the basis of race, color, 
national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the 
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, 
state or local laws, or executive orders. 

In addition, Carnegie Mellon University does not discriminate in admission, employment or adminis- 
tration of its programs on the basis of religion, creed, ancestry, belief, age, veteran status, sexual 
orientation or in violation of federal, state or local laws, or executive orders 

Inquiries concerning application of these statements should be directed to the Provost, Carnegie 
Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice 
President for Enrollment, Carnegie Mellon University. 5000 Forbes Avenue, Pittsburgh, PA 15213, 
telephone (412) 268-2056. 


